Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation.

نویسندگان

  • Keiichi Kojima
  • Yuki Matsutani
  • Takahiro Yamashita
  • Masataka Yanagawa
  • Yasushi Imamoto
  • Yumiko Yamano
  • Akimori Wada
  • Osamu Hisatomi
  • Kanto Nishikawa
  • Keisuke Sakurai
  • Yoshinori Shichida
چکیده

Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the retinal chromophore has been suggested to contribute to the rod's background noise, which limits the visual threshold for scotopic vision. Therefore, rhodopsin must exhibit low thermal isomerization rate compared with cone visual pigments to adapt to scotopic condition. In this study, we determined whether amphibian blue-sensitive cone pigments in green rods exhibit low thermal isomerization rates to act as rhodopsin-like pigments for scotopic vision. Anura blue-sensitive cone pigments exhibit low thermal isomerization rates similar to rhodopsin, whereas Urodela pigments exhibit high rates like other vertebrate cone pigments present in cones. Furthermore, by mutational analysis, we identified a key amino acid residue, Thr47, that is responsible for the low thermal isomerization rates of Anura blue-sensitive cone pigments. These results strongly suggest that, through this mutation, anurans acquired special blue-sensitive cone pigments in their green rods, which could form the molecular basis for scotopic color vision with normal red rods containing green-sensitive rhodopsin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological Properties of Rod Photoreceptor Cells in Green-sensitive Cone Pigment Knock-in Mice

Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in...

متن کامل

Primary structure of a visual pigment in bullfrog green rods.

In frog retina there are special rod photoreceptor cells ('green rods') with physiological properties similar to those of typical vertebrate rods ('red rods'). A cDNA fragment encoding the putative green rod visual pigment was isolated from a retinal cDNA library of the bullfrog, Rana catesbeiana. Its deduced amino acid sequence has more than 65% identity with those of blue-sensitive cone pigme...

متن کامل

Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments.

The chicken retina contains rhodopsin (a rod visual pigment) and four kinds of cone visual pigments. The primary structures of chicken red (iodopsin) and rhodopsin have been determined previously. Here we report isolation of three cDNA clones encoding additional pigments from a chicken retinal cDNA library. Based on the partial amino acid sequences of the purified chicken visual pigments togeth...

متن کامل

Visual Pigments in Single Rods and Cones of the Human Retina. Direct Measurements Reveal Mechanisms of Human Night and Color Vision.

Difference spectra of the visual pigments have been measured in single rods and cones of a parafoveal region of the human retina. Rods display an absorption maximum (lambdamax) at about 505 mmicro associated with rhodopsin. Three kinds of cones were measured: a blue-sensitive cone with Amaxe about 450 mpf; two green-sensitive cones with Xmaa about 525 mumicro; and a red-sensitive cone with lamb...

متن کامل

Evolution of visual pigments and related molecules.

The molecular phylogenetic tree of vertebrate visual pigments, constructed on the basis of amino acid sequence identity, suggests that the visual pigments can be classified into five groups (L, ML, MS, S and Rh) and that their genes have evolved along these five gene lines. Goldfish has a UV-sensitive visual pigment (S group) localized in miniature single cone cells. Medaka has one type of rod ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 21  شماره 

صفحات  -

تاریخ انتشار 2017